DT LTI Systems and Convolution
Published:
Sources
This is the notes while studying ECE 2200 Signals and Information.
Also, another source I go through is PDF
LTI Systems
- An LTI system is a linear time-invaiant system, that is
- Linear:
graph LR A("x[n]")-->B("System S") B-->C("y[n]")
graph LR A("r[n]") --> B("System S") B-->C("s[n]")
graph LR A("x[n]+r[n]") --> B("System S") B-->C("y[n]+s[n]")
- Time-invaiant:
graph LR A("x[n-n0]") --> B("System S") B-->C("y[n-n0]")
convolution sum
\begin{equation}\label{convolution} y[n]=\sum\limits_{k=-\infty}^{\infty}x[k]h[n-k]\triangleq (h*x)[n] \end{equation}
unit pluse signal $\delta[n]$
\[\delta[n]=\Bigg\{ \begin{aligned} &1 &\text{when} \quad &n=0 \\ &0 &\text{when} \quad &n\neq 0 \end{aligned}\]\begin{equation}\label{convolution identity} x[n]=\sum\limits_{k=-\infty}^{\infty}x[k]\delta[n-k] \end{equation}
LTI system and convolution sum
Let $h[n]=y[n], x[n]=\delta[n]$, then $y[n]$ can be written as a convolution sum:
\[y[n]=\sum\limits_{k=-\infty}^{\infty}h[k]x[n-k]\]We will represent this LTI system as following digram:
graph LR
A("x[n]") --> B("LTI h[n]")
B-->C("y[n]")
properties of convolution sum
- Commutativity
- Associativity
- Distributivity
- Shift property let $\hat x [n]=x[n-n_0]$
- Identity
Causal System
- Def: An LTI shstem is causal iff
Memoryless System
- Def: An LTI shstem is memoryless iff
Stable System
- Def: An LTI shstem is stable iff
Complex Eigenfunctions
\[x[n]=x_R[n]+jx_I[n]\] \[y[n]=\sum\limits_{k=-\infty}^{\infty}x_R[k]h[n-k] +j \sum\limits_{k=-\infty}^{\infty}x_I[k]h[n-k]\]Hence,
\[\begin{aligned} \text{Re}\{y[n]\}&=\text{Re}\{(x*h)[n]\}=(x_R*h)[n] \\ \text{Im}\{y[n]\}&=\text{Im}\{(x*h)[n]\}=(x_I*h)[n] \end{aligned}\]Example: If $x[n]=e^{j \omega_0 n}$,then
\[y[n]=\sum\limits_{k=-\infty}^{\infty} h[k]e^{j \omega_0 (n-k)} =\sum\limits_{k=-\infty}^{\infty} h[k] e^{j \omega_0 (n)}e^{j \omega_0 (-k)}\]Say,
\[H(\omega_0)=\sum\limits_{k=-\infty}^{\infty} h[k] e^{-j \omega_0 (k)}\]then,
\[y[n]=H(\omega_0)e^{j \omega_0 (n)}\]Example: If $x[n]=\cos(\omega_0 n)=\text{Re}{ e^{j\omega_0 n } }$, then
\[y[n]=\text{Re}\{ H(\omega_0) e^{j\omega_0 n } \}\]Remark: CT LTI Systems and Convolution is similar to DT one, just replace $\sum$ to $\int$.